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Asymptotic Expansions for the Discretization 
Error of Least Squares Solutions of Linear 

Boundary Value Problems 

By Klaus Bohmer and John Locker 

Abstract. For determining least squares solutions of linear boundary value problems, 
the method of regularization provides uniquely solvable boundary value problems, which 
are solved with difference methods. The determination of the coefficients in an asymp- 
totic expansion of the discretizaltion error in powers of the regularization and discretiza- 
tion parameters a and h, respectively, is an ill-posed problem. We present here an 
asymptotic expansion of this type and discuss the numerical implications for Richard- 
son extrapolation, thereby establishing for the first time methods of arbitrarily high 
order. 

1. Introduction. For the numerical solution of well-posed boundary value 
problems via difference approximations, the existence of an asymptotic expansion 
of the discretization error in powers of the stepsize h is a most important fact. Ex- 
pansions of this type are basic for Richardson extrapolation (see [19]), for deferred 
corrections (see Pereyra [16], [17], Keller and Pereyra [10], Russell [20], and Skeel 
[21]), and for discrete Newton methods (see Bdhmer [2], [3]). For ill-posed problems 
the situation is more complex. 

In this paper we compute the least squares minimal-norm solution of an ill-posed 
linear boundary value problem by combining regularization and difference methods. 
For the method of regularization the ill-posed problem is transformed into a family 
of "neighboring" well-posed problems involving a regularization parameter a, and 
then the limit is taken as a tends to 0. This approach was historically introduced 
by Phillips [18] and Tikhonov [23], [24] to overcome the numerical difficulties in 
solving integral equations of the first kind. In [12], [13], [14] Locker and Prenter 
applied this method, combined with finite element approximations, to first-kind 
integral equations and differential equations. With a stepsize parameter h for the 
finite element method of order k, they obtain O(hk/a2) for the error. Natterer [15] 
used projection methods on the original ill-posed equation, employing an appro- 
priate fixed h = hopt, which is naturally available from the projection method as 
regularization parameter. A limiting hopt tending to zero and an asymptotic expan- 
sion do not make sense in this context. In combining regularization and difference 
methods we obtain an asymptotic expansion for the "regularized" discretization 
error in powers of the regularization parameter a and the stepsize h. 
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Throughout this paper we work in the real Hilbert space L2 [0, 1] with its standard 
inner product (,.) and norm Let 

n 

Lo = E ADV 
v=O 

be an nth-order formal differential operator on the interval [0,1], let 

n-1 

Bix = E[biv(O)Dvx(O) + biv(1)Dvx(l)], i = 1,..., k, 
v=O 

be a set of k (O < k < 2n) linearly independent boundary operators, and let L be 
the nth-order differential operator in L2[0, 1] defined by 

L 
{ 9(L) := {f x6 Hn [0, 1] I Bix = O.i , . . j ,+ } L2[0, 1] 

x ?-* Lx := Lox, 

where Hn[0, 1] is the Sobolev space consisting of all x E Cn-1[0, 1] with X(n-1) 

absolutely continuous on [0, 1] and x(n) E L2[0, 1]. For a given y E L2[0, 1] we 
determine the least squares minimal-norm solution of the linear boundary value 
problem 

(1.1) Lx = y 

by the method of regularization, using the identity operator I as regularization 
operator. 

For each a E R, a :$ 0, let G, be the functional defined on 9(L) by Gx 
Lx _ y112 + &2 1 X 11 2. In regularization one shows that there exists a unique solution 

xQ E O(L) to the minimization problem 

(1.2) Gx, = inf GQ X, 
XE-'(L) 

and that as a -- 0 the x, converge to the least squares solution xo E O(L) of (1.1) 
having minimal norm 11 11 The adjoint operator L* is also an nth-order differential 
operator in L2[0, 1] determined by the formal adjoint L* and by adjoint boundary 
operators B*, i = k + 1,...,2n. In terms of L and L* for each a &0 the x, in 
(1.2) is characterized by (see [14]) 

(1.3) { LE (L),Q YC + 
- 

(L), and 

Other equivalent characterizations are possible (see [5]). 
In Section 2 we establish the power series expansion 

00 

(1.4) xi = a2e2, eo = xo, 
1=o 

which converges with respect to the H2n-Sobolev norm for a sufficiently small. 
Here the e28, are independent of a. The expansion (1.4) is based on the series 
representation 

00 

(1.5) (L*L+&21)1 = -2P+E(_1)i&2iKi+, 
i=O 
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where P is the orthogonal projection onto the null space of L and K is the general- 
ized inverse of L*L. In that section it is also shown that all these series in powers 
of a2 represent asymptotic expansions. 

In Section 3 we use compact symmetric difference schemes (see, e.g., Keller and 
Pereyra [10]) to solve (1.3). Stability and convergence results for the difference 
approximate xh are derived there. For sufficiently small a and h < ha we even 
obtain in Section 4 an asymptotic expansion of the discretization error of the form 

(1.6) (h (t) q= 2v Ce2(p-v) fh1(t) + 0 (2q 

v=O JL=0 

for grid points t and sufficiently large jr, The coefficients f2i,,2v are independent 
of a and h, and f2i,,o = e28 as in (1.4). See Eqs. (4.13) and (5.1) for details. 
Unless very specific information for (1.1) is provided, namely X(L) = {0}, for a 
combination of regularization and difference methods the a--2v terms in (1.6) are 
unavoidable. 

The development of these results for X(L) :A {0} is strongly aggravated by 
the fact that (1.3) represents a whole family of boundary value problems, with 
the norms of the associated operators (L*L + Ce21)-1 exploding at the rate C/l2 

as a -- 0. Although the determination of a minimal-norm least squares solution 
to (1.1) is a well-posed problem, numerical methods do not inherit this property. 
This becomes apparent in the O(hk/a2) result of Locker and Prenter and the 
need for choosing a specific hpt in Natterer. Furthermore, the computation of an 
asymptotic expansion for the discretization error is an ill-posed problem because of 
(1.5), and to our knowledge, it has not been done before. To this end, the operator 
(L*L + a2I)-1 has to be applied q - 1 times, a process that finally yields (1.6). 

There are many benefits to our approach. Whereas the usual methods are limited 
to fixed-order discretization methods, where a and h have to be fitted, we may 
directly use (1.6) to define a class of discretization methods of variable order, e.g., 
via Richardson extrapolation or discrete Newton methods or some other type of 
defect corrections. Numerical examples, presented in Section 5, show very clearly 
these nice features. For the most interesting, and in our context, the usual case 
where X(L) :$ {0}, we restrict the numerical experiments to the case a = V7i 
with a fixed constant -y, obtaining from (1.6) an asymptotic expansion in powers of 
h (instead of powers of h2 and a2) of the form 

(1.7) xh(t) := Xh (t) = xo(t) + he;(t) + h2e*(t) + 

As always, high-order methods are worthwhile only in smooth situations where 
high accuracy is required. In such a situation these variable-order methods based on 
asymptotic expansions are excellent tools to obtain high accuracy in comparatively 
little computation time. 

In this paper we omit some of the proofs and many technicalities, and we refer 
the interested reader to [5]. 



78 KLAUS BOHMER AND JOHN LOCKER 

2. Power Series and Asymptotic Expansions. Assume that the coefficients 
A, of Lo are sufficiently smooth to form L*Lo and 

2n-1 

Bix= B: Lx = E [biv(O)Dvx(O) + biv(1)Dvx(1)], i = k + 1, .. ., 2n. 
v=0 

In solving (1.1) and (1.3) we will use the differential operator L*L given by 

L*L. { 9J(L*L) = {x E H2n[O, 1] I B-x = 0, i = 1,2... ,r --+ L2[0, 1] 

x - L*Lx = L*Lox, 

together with the generalized inverses of L and L*L: 

Lt: f Z(Lt) := 
L2[0, 1] -9(L) 

x x Ltx := [L I O(L) nr4(L)']-'(I - Q)x 

and 

K (- L*L)t: 
O (K) := L2[0, 1] -- ?(L*L) 

(x ) -l K := [L*L I92(L*L) nrl(L*L)]-1(I - P)x, 

where P, I - P, Q, and I - Q are the orthogonal projections onto the subspaces 
X(L) =yl/(L*L), 3M(L*) = '4(L*L),yl/(L*), and iM(L), respectively. Let 

S := Lty E 9(L) nrV(L)', 

the least squares minimal-norm solution of (1.1). Utilizing these operators, we 
are able to construct a power series expansion of the regularization function x, in 
powers of a2 and in terms of the least squares solution xo. 

For,'X(L) = {0} or P = 0, we have K = (L*L)-1. In this case we might want to 
avoid regularization completely, and instead of Lx = y study the uniquely solvable 
problem 

L*(Lx - y) = 0. 

Assume that y E Hn[O, 1], which implies that xo, x, E H2n[O, 1]. Then (1.3) can 
be rewritten as 

LLLox, + a&2x = L*y, 

(2.1) B-x, = , i = l... Ik) 

Bixs = B,*y1 i = k + 1, . .., 2n. 

In the next two sections we will numerically solve (2.1) by using finite difference 
methods. This will require replacing (2.1) by 

(2.2) f LL0wo + a wo = Z, 
BWQ (B-W )2n 13 /3 ,)2 Bw,, := (Bwa)= :=(i=1 

where z E L2[0, 1] and 13, ...,32n are constants. We now proceed to solve (2.2), 
expanding wQ in a power series. 

Let biv(O) := b-v(l) := 0 for i = 1, ... ,k and v = n, .. ., 2n- 1; let N be the 
2n x 4n boundary matrix 
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which has rank 2n; and let Nt be the Moore-Penrose generalized inverse of N. 
Next, let H be the Hermite interpolation operator defined by 

R I~n - r74n-1 = {polynomials of degree < 4n -1, 

H: d:= (do d v = O1, ...,2n-1)T H Hd :=p such that p(v) (O) = dvo, 

p() (1) = d, v= O 1, .. ., 2n-1. 
Finally, let 

p := HNtI3, v, := wQ-p, zo := z-L*Lop, zo := Zo-_ 2p. 

The polynomial p depends continuously on 13 and satisfies Bp = 13, and v, E 

O(L*L) with 

(2.3) (L*L + a2I)V, = z- LLop - 2p = Zoat2p = Zoe 

Therefore, v, = (L*L + &2I)-lz, and 

(2.4) We= (L*L + a21)-lz, + p = (L*L + a2)-l(zo _ a2p) +p, 

and consequently, we need a power series expansion for the operator (L* L + 2 I)-1. 
With this goal in mind, let I (L2[0, 1]) denote the Banach space of all bounded 

linear operators on L2 [0, 1] with norm 

IITIIL2 = sup IITxII. 
11l=1 

For the Sobolev space Hn[0, 1] we introduce the Hn-Sobolev norm 

n-1 

IIXIIHn ZE 1X(i) 1100 + I1X(n) II. 
i=O 

It is well known that O(L*L) becomes a Banach space under the H2n-Sobolev 
norm 11 IIH2n. Let 22 denote the Banach space of all bounded linear operators from 
L2[0, 1] under the L2-structure into 92(L*L) under the H2n-Sobolev structure, with 
norm 

IITIIHo,2n = sup IITxIIH2n. 

11 =1 

Clearly, the linear operators (L*L+a2)-lP, and Ki+l, i = 0,1,2, ..., belong to 
both q(L2[0, 1]) and X. 

For the generalized inverse K = (L*L)t = Lt(L*)t, considered as an operator in 

_q(L2[0, 1]), we know that I + a2K is invertible for I l < 1lK 11/2 I and KP = 0 
and (I + &2K)P = P, and hence, 

(2.5) (I + a K)'P = P. 

Applying the operators P and K to the equation 

(L*L + a21)(L*L + a21)-1 = I 

we obtain 

(2.6) P(L*L+& I)1 = --P 

and 

(2.7) (I - P + C&2K)(L*L + &21)-1 = K. 
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In view of (2.6) we can rewrite (2.7) as 

(+RK)(L*L aI - =1P+Kl 
and finally, by (2.5) this becomes 

(2.8) (L*L + a2)1 = P + K(I + &2K)-1 

for 0 < alo < jlK IIE12 . Here and in the sequel the negative powers of a2 will occur 
if and only if P # 0, or equivalently, X(L) # {0}, the exception being when P 
is applied to special elements belonging to X(P) = X(L)- = R(L*), e.g., as in 
(2.18). 

Next, we expand (I + a2K)-1 in a Neumann type expansion in W(L2[0, 1]). 
Define 

ao := (211KL2)-1/2 

and let us assume throughout the rest of the paper that 0 < Icl < &o. Clearly, 

a2IIKIIL2 < a2/a2 and 1/(1 - a&211KIL2) < 2, and 
00 

(2.9) (I + &2K)-1 = E(_1))itC2tK in M (L2[0, 1]), 
i=O 

with the error estimate 

(2.10) (I + a2K)-1 _- E(j)itC2tK| < 2((2 /a2)3+l 
i=O L2 

for j = 0, 1, 2, .... To simplify the notation in the sequel, we set 

K-2 = P and K2j = (1)iKt+l i = 0, 1 2.... 

Then substituting (2.9) into (2.8), we obtain the expansion 

(2.11) (L*L + a&2I)-1 = E 2iK2, in , 
i=-1 

with the error estimate 

(2.12) |(L*L + a2I a >i~| < 211KIIIHO 2n 0l/tj 

i=-1 HO,2n 

for j = 0,1, 2, .... Note that (2.12) is also valid for j = -1 by (2.8) and (2.9). In 
addition, (2.11) yields the bound 

(2.13) Il (L*L + a21>1 llHo,2n < -2IIPIIHo,2n + 2IIKIIHo,2n. 

The final step is to combine (2.4) and (2.11). Indeed, if we set 

e-2 K-2ZO= PZo, 

(2.14) eo := Kozo + (I K-2)P = Kzo + (I - P)p, 

e2% := Kgizn- K2(41)v = (-l)iKi+lzo - (-l)zltPI i = ,i= 2 ..., 
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then we get the expansion 
00 

(2.15) Wa = E 2ie2i in H2n[0, 1], 
i=-1 

with the error estimate (use (2.12)) 

j 
(2.16) a- j a2ie ? C(o/&2 )i+l (IzII + Ili3Io) 

i=-1 H2n 

for j = 0,1, 2..... In this inequality and in the sequel, C denotes a generic constant 
which is independent of the parameters a and h, and 11 * 1lo denotes a fixed norm 
on R2. 

Remark 2.1. The we need not converge as a -+ 0. For example, if z E X(L) 
with z :$ 0 and: = 0, then p = 0, Pzo = z, 

Wa> = 2Z1 and IIWQIIH2n- oo as a -0. 

This type of behavior has already been observed in [9]. 
Special Case. (2.2) reduces to (2.1): we = x,. In this special case we have 

(2.17) Z = Lty; 3i = O. i = 1,...,k; 13i = B*y, i = k+ 1,...,2n. 

Consequently, B*(y-Lop) = pi3-Bip = 0 for i = k+1,.. .., 2n, so y-Lop E O(L*), 

Zo = Loy - L*Lop E R(L*), and 

(2.18) e-2 = PZO = 0. 

Also, Bip = 13 = 0 for i = 1,..., k, so p E 9(L). Since 

KL* -Lt(L*)tL* = Lt(I - Q) = Lt on _(L*) 

it follows that 

eo = (I-P)p + KL*(y-Lp) = (I-P)p + Lty-LtLp = Lty 

or 

(2.19) eo = Lty = xo. 

We conclude that the regularization function x, has the power series expansion 
(1.4) with the error estimate 

(2.20) || a2i-e2i ?< C(a2/ca)+lI YIIHn 
i=O H2n 

for j = 0,1, 2, .... In particular, for j = 0 we get the well-known estimate (see [141) 

(2.21) t|x -XOllH2n < 2C&IyIIHn. 

Since the right-hand sides of (2.12), (2.16), and (2.20) are Q(a 2j+2) for fixed j, 
the corresponding power series represent asymptotic expansions. A similar state- 
ment is true for the series in Sections 3 and 4. 



82 KLAUS BOHMER AND JOHN LOCKER 

Remark 2.2. In our numerical work it will be necessary to use smoother classes 
of functions than L2 [0, 1] and H2n [0, 1]. Indeed, for 0 < I < oo consider the Banach 
space Cl [0, 1] with norm 

IIxIlci Z I1x'i 1100. 
i=O 

Clearly O(L*L) n C2n+l [0, 1] is a Banach space under the norm 11 1C2n+1. Let 
IV (Cl [0, 1]) and 2j be the respective counterparts of -I (L2 [0, 1]) and 2' with norms 

IITIIci= sup IITxIjci 
llzllc =1 

and 

IITIIcL,2n+l = sup IITxIIc2n+l. 
Ilzllc =1 

The linear operators in (2.11) all belong to 2j when suitably restricted. Thus, by 
similar arguments, the above results for (L*L + a21)-1 are valid in 2j with the 
norm 11 * IICL,2n+L replacing 11 I I1H0,2n, and assuming z E Cl[0, 1] and y E Cn+l [0, 1], 
the results for the wQ and the x, are valid in C2n+L[0, 1] with the norm 11 * lIC2n+ 

replacing 1 IIH2n (see [5]). 

3. Stability and Convergence for Finite Difference Methods. Based on 
(1.3) and (2.1), our aim is to compute finite difference approximations x, for x,. 
Let 

2n 

M(QX := L*Lox + a2x E(av + a026vo)DvX, 

(3.1) Fx :=vO 2n 

Bx:= (Bix = E [biV(O)Dvx(O) + bjV(1)Dvx(1)])j 
p-'? i=l 

Then Eq. (2.1) becomes 

(3.2) FQZQ - (=tofy) with3 (pi-O. i1,...,k 

To discretize (3.2), we introduce a stepsize h, an equidistant grid Gh, and Gh: 
Gh n [o,1] by 

h :=-, Gh := {ti := ih, i =-n,-n + 11, ...,,1, .. ., m, .. , m + n}. 

To simplify matters and to allow Richardson extrapolation, we have changed the 
Gh and the B4 given below from those used in [5] and [10]. As a consequence of 
Gh t [0, 1], we have to use extensions z for functions z to an appropriate larger 
interval [-6, 1 + 6]. The details for the extension procedures are given in [5], where 
it is shown that the extension operators are continuous; we do not distinguish here 
between z and z. 

We next introduce the various operators and norms associated with our dis- 
cretization. With the standard difference operators 

D+x(t) := (x(t + h) - x(t))/h, Dzx(t) := (x(t) - x(t -h))Ih 

Doz(t) := (x(t + h) - x(t - h))/2h 
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and with 

xh Gh RR Zh G Rh , R T h Gh , RI x R2n - {Gh - R} 

let 

\X:=xl A h ~(z, r) := (zj|G~,r), 

||xhj | : maxf|Dj Xh (t') I. t,,,t,,+j Ez G }, 
j=O 

jzhjj, : maxf|Dj Zh (tv,) : tv,,tv+j Ez G h} 
j=o 

(zh r)JI, := jZhjj, + jjrjjoj 11 (z, r) 1c, := 11zllc, + jjrjjo, 

|IT hjjos : supflIT h 
(Zhr)jjj: 11(zh jr)1jo < 1}. 

Clearly IjX1zII < ClIXlIIc. Choosing difference approximations 'd for Dv in 
the differential operators, ILvxh(O) and rV h(l) for Dvx(O) and Dvx(l) in the 
boundary operators, we discretize (3.1) into 

2n 

MXh := E(av (ti) + Ce 0)dX(t) i = O. 1, ... ., ml 

(3.3) ahx= =o 
2n-1 2n 

h3 = (Bhhh E[ biv(o2rvh (1)] 

Choosing in this formula all the 9sv, s = d, 1, r, by centered compact formulas, 

(3.4) ? = (D+D-)v, 2+1 (D+D-)vDo for s = d,l,r, 

we discretize (3.2) into 

(3.5) F = Ah (OY) 

For y E Cn+2[0, 1], implying xz E C2n+2[0, 1], we find by standard arguments that 

(3.6) aIL\"F X _ FhLh"zQ < h CIlyIcn+2 
and hence, we have consistency independent of ae. Here and in the sequel we have 
to assume 0 < h < ha. 

To estimate the stability bounds-yielding existence and uniqueness of xh with 
(3.6)-we use a result due to Beyn [1], determining the size of this bound instead of 
showing only its existence as in Grigorieff [8], Kreiss [11], Esser [7], or Vainikko [25]. 
Let A. and Ah denote the inverse operators for F.: C2n [0, 1] Co [0, 1] x R2n 
and Fh,: {fG , R} -- {Goh - R} x R2n, respectively. To determine A. (z, r), and 
hence, to compute the solution x to FQx = (z, r), we use the techniques of Section 
2: Let p := HNtr, x - p E _(L*L), (L*L + a2I>) = z- LLop - 2p, so 
finally 

(3.7) AQ(z, r) := x = (L*L + a21)-l (z - LLop - a2p) + p. 

The continuity of HNt, (2.13), and Remark 2.2 yield the estimate 

(3.8) IIAa(zr)IbC, < IIAQ(zr)11C2n = 11x11c2n ? C 11(zjr) lC0 = 
C 

JjFaxjjCo ,-jl~,r,2 c =-ilir2 



84 KLAUS BOHMER AND JOHN LOCKER 

for i = 0,1, ... , 2n - 1, which implies that 

(3.9) IIAiIcot := sup ( 1AoQ(z,r)Ijc, < ? 
1j (zr)jj|co =j C 

Computing zh from Fhxh = (Zh r) defines A h by Ah(zh, r) := Xh. Then Theorem 
6.2 in [1] states that 

(3.10) rim IIA hI1o,, = IIAa Icost. 

In the standard way we obtain from (3.6) and (3.10) 

THEOREM 3.1. In (3.1) and (3.2) assume a,, E C2[0, 1] Iv = 0,1 ... 2n, and 
y E C,+2[0, 1]. Then for i = 01, ...,2n-1, 

A IhX _ -Xh||1 < CIjyIjcn+2h2/a2, 
(3.1X _h -Xh 1I < CIjyIjCn+2 (a2 + h2/a2). 

Remark 3.2. For P = 0, the negative powers of a 2 have to be omitted in 
Theorems 3.1, 4.1, and 4.3, Remarks 3.3 and 4.4, and Corollary 4.2. We will discuss 
the question of avoiding the negative powers of a 2 in the context of asymptotic 
expansions at the end of Section 4. 

Remark 3.3. The "generalized Collatz Mehrstellenverfahren" or "Hermitian 
methods" [6], [10] are defined for the case a, = 0, v = 2n - 1, . . . , 2(n - p) + 
3, p > 1. Letting F"ah,C h,C /h,C AkhC denote the appropriate modifications of 

Flx h, Ih, h, respectively, we have to solve the equation 

Fah,C Xh,C = ,ah,C ( p ) F~"0~'0 AhC(OY) 

corresponding to (3.5). Then 

IIAhCFX - -FhCAhhCXzo < Ch2 pIyIcn?2p, 

and for i = 0 1,. . .,2n-1, 

AhCXO o- XhC1II < CIyIjCn+2p (a2 + h2P/ae2). 

4. Asymptotic Expansions for the Discretization Errors. After deriving 
consistency, stability, and convergence results, we proceed to develop asymptotic 
expansions for the discretization errors. To allow asymptotic expansions, we need 
higher smoothness than in Section 3. Consequently, we assume 

(4.1) Y E Cn+2q[0, 1] and av E C2q[0, 1] 

for v = 0 1, ... .2, 2 so x, xa E C2(n+q) [0, 1]. Then for the "local discretization 
error" Ah defined by 

(4.2) F~?ghx = Ah[(FQ + Ah)x], 
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we find the following expression which is independent of a: 

q-1 qtL1 \Fd 
2n 

E aL'a()L+2jAX(t) 

(4.3) I h |n 
h A 2n-1 

Sau A[biv(0)Dv+2jXz(0) + biv(1)Dv+2AX(1)] 
v=0 

i= 1... 2n 

+ Q(h2q) 

where the av are listed as 
a', 

in [10]. In particular, 

a02 ? ac2,A= (2p + 1)! a2X 1 =0,2= 1 2 = 2 

It is obvious that the F2,A: C21 [0,1] _+ C2(l-iA-n) [0,1] x R2n are continuous oper- 

ators for ,u = 1, .. ., q- 1, 1 > n + M. 
To compute an asymptotic expansion for the "global discretization error" 

q-1 

xh _-AhX = 5h h2ffa,2v + Q(h2q), 
v=1 

we determine the fa,2v recursively from 

q-1 q-1 

(4.4) tFa + E1 rh2 F2/) (X + E' h2vf2v) - (L0y, 1y) = (h 
A= 1 v=1 

where by definition on the left side only terms which are not 0(h2q) are to be 

considered, e.g., the term h2 4F2q-4(h6fa,6) is neglected. We have indicated this 

by the symbol Zr in (4.4). Using (3.2), we have to compute the fa,2v inductively 

from equations which are obtained by annihilating the h2, h4,... terms in (4.4), 

and hence, for v = 1,.. ., q-1, 

(4.5) Fafa,2v = - (?2vxa + 5 
-P2jfa,2(v- L)) =(r 2vj 

Proceeding as in Section 2, we compute 

P,2v := -HNtra,2v, 

Y,2v := -(YQ,2v + L*LoPa,2v + a PQ,2v) ZO,2v + O(a 2), 

foa,2 = -(L*L + a:2 I<) '1a,2v + Pa,2v. 

By inductively using the smoothness properties of the F2p, XZQ, fa,2v i starting with 

(4.1), we end up with Yoa,2v e C2(q-v) [0, 1]. This implies that 

fa,2v E C2(n+q-v) [0, 1]. 

The inductive use of the expansions for x., (L* L+a:2 I) -11, YQ,2vi fa,2vj and a careful 

bookkeeping of norms, necessary extensions, and constants yields the following 
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(cf. Remark 3.2) 

THEOREM 4. 1. Let (4.1) be satisfied and assume the discretization (3.3) -(3.5) 
is used. Then the functions fQ,2V in (4.4), (4.5) exist for v = 1,... , q - 1. With 

fQ,o := xQ the following estimates are valid for i = 0,1, ... , 2n - 1: 

h 
q-1 

( 4 \q-1 h2q 
(4.-6 

h 
hv fa,2v) ? C E Ijfa,2vIIC2(n+q-v) 2 

(4.6) L>=o i = >= 
h2q 

< CllyllCn+2q 2q. 

The functions a2Vf 2v admit the following expansions, converging in the norm 

11 IIC2(n+q-v) 

00 

(4.7) a2vfa,2v = E a21v2p,2v v = 0,1,.. ., q - 1, 

,u=o 

with the norm estimates for j = -1, 0, 1,... and y = O 1,.. ., q- 1: 

(ae2 /ag2)j+' Ij I 
(4.8) Ilfa,2v - dc,2V,jIIC2(n+q-v) < C' 0a2 lylCn+2q 

for da,2v,j := /A=0 2(/) f2j1,2 v 

For the lengthy and highly technical proof, see Theorem 7.1, Corollary 7.2, and 
Lemma 7.3 in [5]. 

COROLLARY 4.2. Under the conditions of Theorem 4.1 define dQ,2v := da,2L, 
by choosing bounded jv := j in (4.8). Then the following estimates are valid for 

i=0,1,...,2n-1: 

(4.9) zX - Ah (I h2vd,2, ) ?| < (? + h2va2(jv+1-v)) jyCn+2q. 

Proof. Use the triangle inequality on (4.9), combining it with (4.6) and (4.8). 
Since the jv are bounded, v = 0,1, . .. , q - 1, the Ij~v I/. 2jv+2 in (4.8) are bounded 
as well, independent of a and h. E 

Examining the right-hand side of (4.9), we see that the best we can do is to 
choose the jv such that 

(4.10) h h2q 

Since we want the right-hand side of (4.8) to tend to zero as h -) 0, we have to 
impose some h = o(a), e.g., 

(4.11) h = alac for c > 1. 

For this case, (4.10) requires us to choose the jv such that 

(4.12) iv > (q- v)(c-1)-1 (=q-v-1 for c = 2) 

for v =0,1,...,q-1. 
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THEOREM 4.3. Let the conditions of Theorem 4.1 and (4.11), (4.12) be sat- 
isfied, and choose the j, bounded. Then the following inequalities are valid for 
i = 0, 1,. . .,2n-1: 

(4.13) |Xh _ h ( + a2A e2 + E h2 V a( ) f2i 2v) < C ( ) 
JA= 1 ~ v=1 JA=O 

Remark 4.4. Upon using the generalized Collatz Mehrstellenverfahren, (4.13) 
has to be replaced by 

jo ~~q-1 

(X4.1C A (zo + E a2"e2, + E h2E a2(v-v+p-l)f2 )12v 
(4.14) ,u=1 V=p ,u=O 

h2(q+p- 1) 

- C 2 q 

One might ask: Under what conditions on the problem and/or its discretization 
can the negative powers of a2 be avoided? Because of the linearity of all operators 
involved, fa,2 has no a-2 term if and only if 

(4.15) Pz0 = 0 with zo := ZO,2 = -F dx0 + L*LoHNtF'%0. 

This condition may randomly be satisfied. For dl(L) = {O} or P = 0 it is always 
satisfied. By changing the discretization method, and thus F d and F', or Ffd and 
Fb for a first-order method, we again have Pz0 = 0 only by pure chance. For 
problems of the general form (1.1), we have to expect Xl(L) $ {0}, and hence, a 
combination of regularization and difference methods unavoidably yields negative 
powers of a2. If one is willing to compute Xl(L) first, then one might use the Lt 
given in Section 2 to directly compute x0. 

5. Numerical Results. The forms of the asymptotic expansions in Section 
4 depend strongly upon whether lY(L) $ {O} or lY(L) = {O}. Whenever this 
information is available (or probable), e.g., for too few or too many boundary 
conditions, one should use it. In general, Richardson extrapolation separately for 
a and h is not appropriate (see [5]), and we relate a and h to obtain an expansion 
in only one parameter. 

In case dl(L) $ {O}, a regularization is unavoidable to compute x0 = Lty, and 
negative powers of a 2 occur throughout as in (4.13). Therefore, we choose 

a = Vyh whenA"V(L) ${0} 

to obtain an expansion in powers of h: 

(5.1) xh := xh Ah{X +he* + h 2e* + } 

with the e* independent of h and a. This situation is illustrated by Example 5.1. 
The complementary case Xl(L) = {O} is only interesting in our context for 

dl/(L*) $ {0} or M(L) = A/(L*)I $ L2[0,1]. We choose 

a = ah when./V(L) ={O} 

to obtain an expansion in powers of h2: 

(5.2) x := xzh =Lx{zO + h e2 + h e4+} 

with the e-i independent of h and a. Example 5.2 illustrates this case. 
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Example 5.1. For n = k = 2 let 

9?1(L) := {x E H2[0, 1] I x(0) = x'(1) - x(1) = 0}, Lx:= (t2 + 1)x" - 2tx' + 2x, 

and let 
y 6t4 - 4t3 + 12t2 - 12t + 2 + t(t2 + 1)-2 

where .4(L) = (t),,4/(L*) = (t(t2 + 1)-2), and 

o= Lty = t4- 2t3 + t2 - t/20. 

Example 5.2. For n = 2, k = 3 let 

1?(L) := {x E H2[0, 1] I x(1) = X'(O) = x'(1) =O}, Lx :=x" + 4 xi 

and let y:= et, where X/(L) = {O},Hf(L*) = (cos7rt/2), and 

xo=Lty= ~8 f2 lrtlrt lr t eir - 2 x0 = Lty = 4 + {Cos -t t-sin 2 t + 2e e- 2- t sin 2 t}. 
ir(4 +ir2) lw 2 2 2 2 tsn2 

In both examples the right-hand side in Lx = y is chosen not to be in W (L). 
Utilizing Richardson extrapolation, we have computed the xh and xh in (5.1) and 
(5.2) in quadruple accuracy on the IBM 4381 at the University of Marburg with 
about 31 digits using the Bulirsch sequence for the stepsizes h = 1/N. Tables 5.1 
and 5.2 give the results for Examples 5.1 and 5.2, respectively. The error represents 
the error maximum on the coarsest grid, and the corresponding orders should be 
1,2,3, ... and 2,4,6,..., respectively. 
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