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Asymptotic Expansions for the Discretization
Error of Least Squares Solutions of Linear
Boundary Value Problems

By Klaus Béhmer and John Locker

Abstract. For determining least squares solutions of linear boundary value problems,
the method of regularization provides uniquely solvable boundary value problems, which
are solved with difference methods. The determination of the coefficients in an asymp-
totic expansion of the discretization error in powers of the regularization and discretiza-
tion parameters a and h, respectively, is an ill-posed problem. We present here an
asymptotic expansion of this type and discuss the numerical implications for Richard-
son extrapolation, thereby establishing for the first time methods of arbitrarily high
order.

1. Introduction. For the numerical solution of well-posed boundary value
problems via difference approximations, the existence of an asymptotic expansion
of the discretization error in powers of the stepsize h is a most important fact. Ex-
pansions of this type are basic for Richardson extrapolation (see [19]), for deferred
corrections (see Pereyra [16], [17], Keller and Pereyra [10], Russell [20], and Skeel
[21]), and for discrete Newton methods (see Bohmer (2], [3]). For ill-posed problems
the situation is more complex.

In this paper we compute the least squares minimal-norm solution of an ill-posed
linear boundary value problem by combining regularization and difference methods.
For the method of regularization the ill-posed problem is transformed into a family
of “neighboring” well-posed problems involving a regularization parameter o, and
then the limit is taken as a tends to 0. This approach was historically introduced
by Phillips [18] and Tikhonov [23], [24] to overcome the numerical difficulties in
solving integral equations of the first kind. In [12], [13], [14] Locker and Prenter
applied this method, combined with finite element approximations, to first-kind
integral equations and differential equations. With a stepsize parameter h for the
finite element method of order k, they obtain O(h*/a?) for the error. Natterer [15]
used projection methods on the original ill-posed equation, employing an appro-
priate fixed h = hgpy, which is naturally available from the projection method as
regularization parameter. A limiting hqpt, tending to zero and an asymptotic expan-
sion do not make sense in this context. In combining regularization and difference
methods we obtain an asymptotic expansion for the “regularized” discretization
error in powers of the regularization parameter o and the stepsize h.
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Throughout this paper we work in the real Hilbert space L2[0, 1] with its standard
inner product (-,-) and norm || - ||. Let

n
Lo=)_ A,D"
v=0
be an nth-order formal differential operator on the interval [0, 1], let
n—1
Biz =Y _[bi(0)D*z(0) + biy(1)D¥z(1)],  i=1,...,k,
v=0
be a set of k (0 < k < 2n) linearly independent boundary operators, and let L be
the nth-order differential operator in L2[0,1] defined by
L. { D(L):={ze€ H"0,1]|B;z=0, i =1,...,k} — L%[0,1]
"\ 2 Lz := Loz,

where H™[0,1] is the Sobolev space consisting of all z € C™~!(0,1] with z(»~1)
absolutely continuous on [0,1] and 2(™ € L2[0,1]. For a given y € L?[0,1] we
determine the least squares minimal-norm solution of the linear boundary value
problem

(1.1) Lr=y

by the method of regularization, using the identity operator I as regularization
operator.

For each o € R, a # 0, let G, be the functional defined on & (L) by Gaz =
|Lz —y||? + o?||z||2. In regularization one shows that there exists a unique solution
To € Z(L) to the minimization problem

(1.2) Goto = ze{%EL) Gaz,

and that as a — 0 the z, converge to the least squares solution zo € Z'(L) of (1.1)
having minimal norm || - ||. The adjoint operator L* is also an nth-order differential
operator in L2[0, 1] determined by the formal adjoint L§ and by adjoint boundary
operators B}, 1 = k+1,...,2n. In terms of L and L*, for each a # 0 the z,, in
(1.2) is characterized by (see [14])

{ Ty €Y (L), Lzo —ye Z(L*), and
L*(Lzy — y) + a%z, = 0.

Other equivalent characterizations are possible (see [5]).
In Section 2 we establish the power series expansion

(1.3)

oo
— 2 —
(1.4) To = Z a‘tegy, €0 = To,
u=0

which converges with respect to the H2"-Sobolev norm for « sufficiently small.
Here the ey, are independent of a. The expansion (1.4) is based on the series
representation
1 [ o]
* 27y-1 _ 12 pritl
(1.5) (L*L + o?I) _§P+2)( 1)ia® Kt
1=
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where P is the orthogonal projection onto the null space of L and K is the general-
ized inverse of L*L. In that section it is also shown that all these series in powers
of a? represent asymptotic expansions.

In Section 3 we use compact symmetric difference schemes (see, e.g., Keller and
Pereyra [10]) to solve (1.3). Stability and convergence results for the difference
approximate a:,’; are derived there. For sufficiently small o and A < h, we even

obtain in Section 4 an asymptotic expansion of the discretization error of the form

(1.6) zh(t) = qz_:l h? i a®BY) £y 00 (t) + O i
. o - . . 2[&,21/ azq
v= ,l,:

for grid points ¢ and sufficiently large j,. The coefficients fo, 2, are independent
of @ and h, and fau0 = €2, as in (1.4). See Eqgs. (4.13) and (5.1) for details.
Unless very specific information for (1.1) is provided, namely .#"(L) = {0}, for a
combination of regularization and difference methods the a=2¥ terms in (1.6) are
unavoidable.

The development of these results for #"(L) # {0} is strongly aggravated by
the fact that (1.3) represents a whole family of boundary value problems, with
the norms of the associated operators (L*L + a%I)~! exploding at the rate C/o?
as o — 0. Although the determination of a minimal-norm least squares solution
to (1.1) is a well-posed problem, numerical methods do not inherit this property.
This becomes ‘apparent in the O(h*/a?) result of Locker and Prenter and the
need for choosing a specific hopt in Natterer. Furthermore, the computation of an
asymptotic expansion for the discretization error is an ill-posed problem because of
(1.5), and to our knowledge, it has not been done before. To this end, the operator
(L*L + o2I)~! has to be applied g — 1 times, a process that finally yields (1.6).

There are many benefits to our approach. Whereas the usual methods are limited
to fixed-order discretization methods, where o and h have to be fitted, we may
directly use (1.6) to define a class of discretization methods of variable order, e.g.,
via Richardson extrapolation or discrete Newton methods or some other type of
defect corrections. Numerical examples, presented in Section 5, show very clearly
these nice features. For the most interesting, and in our context, the usual case
where /' (L) # {0}, we restrict the numerical experiments to the case a = \/7h
with a fixed constant 7, obtaining from (1.6) an asymptotic expansion in powers of
h (instead of powers of h? and a?) of the form

(1.7 zh(t) = x’\‘/ﬁ(t) = zo(t) + hel(t) + h2es(t) + - - - .

As always, high-order methods are worthwhile only in smooth situations where
high accuracy is required. In such a situation these variable-order methods based on
asymptotic expansions are excellent tools to obtain high accuracy in comparatively
little computation time.

In this paper we omit some of the proofs and many technicalities, and we refer
the interested reader to [5].
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2. Power Series and Asymptotic Expansions. Assume that the coefficients
A, of Ly are sufficiently smooth to form LjLo and

2n—1
Biz:=BfLoz = Y [bi(0)D"z(0) + bin(1)D*z(1)], i=k+1,...,2n.

v=0
In solving (1.1) and (1.3) we will use the differential operator L* L given by
L. { D(L*L)={z € H*™[0,1]|B;z =0, i =1,...,2n} — L2[0, 1]
z+— L*Lz = LyLoz,
together with the generalized inverses of L and L*L:
It { (L) = L?[0,1) — Z(L)
‘Nz—Llz:=[L|12UL)NA (L)) 1T - Q)
and
D(K):=L*0,1] - D(L*L)
z— Kz:=[L*L|2(L*L)nA(L*L)*|~Y(I - P)z,
where P, I — P, @, and I — @ are the orthogonal projections onto the subspaces
N (L)y=N(L*L), Z(L*) = F#(L*L), V' (L*), and Z# (L), respectively. Let

zo:=Llye (L) ﬂ/V(L)J",

K= (L*L)": {

the least squares minimal-norm solution of (1.1). Utilizing these operators, we
are able to construct a power series expansion of the regularization function z, in
powers of a? and in terms of the least squares solution zg.

For #°(L) = {0} or P =0, we have K = (L*L)~!. In this case we might want to
avoid regularization completely, and instead of Lz = y study the uniquely solvable
problem

L*(Lz —y) =0.
Assume that y € H™[0, 1], which implies that zg, z, € H2"[0,1]. Then (1.3) can
be rewritten as
L{Lozo + o2z = Ly,
(2.1) Bigo =0, i=1,...,k,
Bizo = B}y, i=k+1,...,2n.

In the next two sections we will numerically solve (2.1) by using finite difference
methods. This will require replacing (2.1) by

(22) { Ly Lowg + @?wy = 2,
‘ Buwg = (Biwa )2, = B := (8:)72;,
where z € L2?[0,1] and B4, ..., B2, are constants. We now proceed to solve (2.2),

expanding w,, in a power series.
Let b;,(0) := b;,(1) :=0for i =1,...,k and v = n,...,2n — 1; let N be the
2n X 4n boundary matrix

N := (b, (0), bi,(1), v=0,1,...,2n - 1)7,,
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which has rank 2n; and let NT be the Moore-Penrose generalized inverse of N.
Next, let H be the Hermite interpolation operator defined by

R*" — m4,—1 = {polynomials of degree < 4n — 1},
H:{ d:=(dyo,dy1,v=0,1,...,2n — 1)T — Hd := p such that p(*)(0) = d,,
p™1)=d,;, v=0,1,...,2n—1.
Finally, let
p:=HN'B, wva:=ws—p, 20:=2—LiLop, za:=2 —a’p.
The polynomial p depends continuously on § and satisfies Bp = (3, and v, €
D (L*L) with
(2.3) (L*L +a®Ivy = 2 — L{Lop — a®p = 20 — a®p = 2.
Therefore, v, = (L*L + o*I)~ 'z, and
(2.4) wo = (L*L+a*) 2 +p=(L*L +a®I)7 (20 — o®p) + p,

and consequently, we need a power series expansion for the operator (L*L+a?1)~!.
With this goal in mind, let % (L2[0,1]) denote the Banach space of all bounded
linear operators on L?[0, 1] with norm

ITll2 = sup [[Tz].
llzll=1

For the Sobolev space H"[0, 1] we introduce the H"-Sobolev norm

n—1
lellm := Y 112@ floo + [l
1=0

It is well known that & (L*L) becomes a Banach space under the H2"-Sobolev
norm ||- || g2». Let £ denote the Banach space of all bounded linear operators from

L?[0,1] under the L2-structure into & (L* L) under the H2?"-Sobolev structure, with
norm

IT||go.2n = sup ||Tz| m2n.
llzll=1

Clearly, the linear operators (L*L+a%I)~1, P, and K'*!,7=0,1,2,..., belong to
both Z(L?%(0,1]) and 2.

For the generalized inverse K = (L*L)t = LT(L*)*, considered as an operator in
% (L?[0,1]), we know that I + 2K is invertible for |a| < ||K||;21/2, and KP =0
and (I + o2K)P = P, and hence,
(2.5) (I+a?K)"'P=P.
Applying the operators P and K to the equation

(L*L+ 2I)(L*L +o?1)7' =1,

we obtain

1
(2.6) P(L*L+a*I)7' = =P
and

(2.7) (I-P+o?K)(L*L+o*I)"! =K.
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In view of (2.6) we can rewrite (2.7) as

(I+?K)(L*L +I)7 ' = %P + K,
and finally, by (2.5) this becomes
(2.8) (L*L+a?])t = -13 P+ K(I+ oK)~

for 0 < |o| < | K|| Lzl /2 Here and in the sequel the negative powers of o will occur
if and only if P # 0, or equivalently, /(L) # {0}, the exception being when P
is applied to special elements belonging to .#"(P) = # (L)t = #(L*), e.g., as in
(2.18).

Next, we expand (I + @?K)~! in a Neumann type expansion in % (L?[0,1]).
Define

ao := (2] K]|z2) V2,

and let us assume throughout the rest of the paper that 0 < |a| < ag. Clearly,
o?||K||Lz < o®/of and 1/(1 - o?||K]||2) < 2, and

(2.9) (I+a’K) 1= i(—l)*oﬂ"K* in & (L?0,1)),
=0

with the error estimate

J
(I + a2K)—l — Z(_l)iQZiKi
=0

(2.10) < 2(a?/ad)’

L2

for 7 =0,1,2,.... To simplify the notation in the sequel, we set
K_o3:=P and Ky :=(-1)'K"*, {=0,1,2,....

Then substituting (2.9) into (2.8), we obtain the expansion

(2.11) (L*L + o21)~ Z o¥Ky; in 2,

1=—1

with the error estimate

(2.12) (L*L + o*I)" E o Ky

1=—1

< 2| K| moan(a?/ad)’*!
HO0,2n

for j =0,1,2,.... Note that (2.12) is also valid for j = —1 by (2.8) and (2.9). In
addition, (2.11) yields the bound

. _ 1
(2.13) I(L*L + o2I)~ || go.2n < 33||P|]Ho,zn + 2|| K || gro,2n .
The final step is to combine (2.4) and (2.11). Indeed, if we set

€_9 = K._220 = PZQ,
(2.14) eo := Kozg + (I - K._g)p =Kz + (I - P)p,
i := Kojzo — K2(i—1)p = (_l)iKi-'-le - (_l)i—lKip’ 1= L,2,...,
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then we get the expansion

oo
(2.15) we = Y o¥ey in H™[0,1],

1=-—1

with the error estimate (use (2.12))

J
(2.16) we — Y ey < C(a®/ad)’ (llzll + 11Bllo)
i=—1 H2n
for 7 =0,1,2,.... In this inequality and in the sequel, C denotes a generic constant
which is independent of the parameters @ and h, and || - ||o denotes a fixed norm
on R,

Remark 2.1. The w, need not converge as  — 0. For example, if z € #'(L)
with z # 0 and § =0, then p =0, Pz = 2,

Wy = —&—22:, and |wql|lgz» — 00 asa—0.

This type of behavior has already been observed in [9)].
Special Case. (2.2) reduces to (2.1): w, = Z4. In this special case we have

(2.17) z=Lgy; Bi=0,1=1,...,k; fi=Bjy, i=k+1,...,2n.

Consequently, B} (y—Lop) = Bi—Bijp = 0fori = k+1,...,2n,s0 y—Lop € Z(L*),
20 = Ly — L§Lop € #(L*), and

(2.18) e_3 =Pz =0.
Also, Bip=8;=0fori=1,...,k,s0 p € Z(L). Since
KL*=L'I)'L*=L'I-Q)=L' on (L"),
it follows that
eo=(I—Pp+KL(y—Lp)=(I-Pp+Ly—-L'Lp=L'y
or
(2.19) eo = Lty = zo.

We conclude that the regularization function z, has the power series expansion
(1.4) with the error estimate

J
(2.20) Ta— Y o¥es| < C(a?/ad)Fyllan
1=0 H?2n
for j = 0,1,2,.... In particular, for j = 0 we get the well-known estimate (see [14})
(2.21) lza — ol g2n < Co®|lyllarn-

Since the right-hand sides of (2.12), (2.16), and (2.20) are O(a?'*2) for fixed j,
the corresponding power series represent asymptotic expansions. A similar state-
ment is true for the series in Sections 3 and 4.
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Remark 2.2. In our numerical work it will be necessary to use smoother classes
of functions than L2[0,1] and H%"[0,1]. Indeed, for 0 < [ < oo consider the Banach
space C'[0,1] with norm

!
lzllo =Y e lloo-
i=0

Clearly Z(L*L) N C*"*![0,1] is a Banach space under the norm || - ||c2n+:. Let
& (C'[0,1]) and Z; be the respective counterparts of & (L2[0, 1]) and 2 with norms

ITllct = sup |[Tz|lc

x”cl=1
and
”T”C‘vz"‘” = §sup ||TI||02n+t.
|| c1=1

The linear operators in (2.11) all belong to Z; when suitably restricted. Thus, by
similar arguments, the above results for (L*L + @%I)~! are valid in .Z; with the
norm || - ||ct.2n+¢ replacing || - || gro.2n, and assuming z € C![0, 1] and y € C™*![0, 1],
the results for the w, and the z,, are valid in C?"+[0, 1] with the norm || - ||g2n+:
replacing || - || g2n (see [5]).

3. Stability and Convergence for Finite Difference Methods. Based on
(1.3) and (2.1), our aim is to compute finite difference approximations z? for z,.
Let

2n

Myz := L{Loz + oz := Z(a,, + a26,0) D"z,

v=0

(3.1) Fyz:= _— 2n
Bz := (B,-a: = Z [6i (0) D" z(0) + biu(l)DVz(l)]>
i=1

v=0

Then Eq. (2.1) becomes

_ (Loy . _(Bi=0,i=1,...,k
(3.2) Faza-(ﬂy> wnhﬂ”"(ﬂFB;y,z‘=1c+1,...,2n'

To discretize (3.2), we introduce a stepsize h, an equidistant grid G*, and G} :=
G"no,1] by

h:= g GM:={t;:=ih, i=—-n,—n+1,...,0,1,...,m,...,m+n}.

To simplify matters and to allow Richardson extrapolation, we have changed the
G" and the B! given below from those used in [5] and [10]. As a consequence of
G" ¢ [0,1], we have to use extensions Z for functions z to an appropriate larger
interval [—6, 14 6]. The details for the extension procedures are given in [5], where
it is shown that the extension operators are continuous; we do not distinguish here
between Zz and z.

We next introduce the various operators and norms associated with our dis-
cretization. With the standard difference operators

D, z(t) ;= (2(t + h) — z(t))/h, D_z(t) := (z(t) — z(t — h))/h,
Doz(t) := (z(t + h) — z(t — h))/2h
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and with
"GP SR, ":GE-R, T': {GE-R}xR™ - {G'—-R},
let
Ahg = 1| Gh, At (z,7r) := (2| Gk, 7),

7
llz*l; := D max{|D} 2" (t,)] tu,tus; € G},
3=0

[
28]l := > max{|D} 2"(t,)|: tu,tus; € G},
j=0

Il = 2™l + lirllos (2 7)llee = Nlzllos + lirlo,
1T lo,i := sup{||T™ (", r)ll:: (=", 7)llo < 1}.
Clearly ||A*z||; < C|z||c:. Choosing difference approximations &Y for D¥ in

the differential o;erators, 2z"(0) and Zz"(1) for D¥z(0) and D¥z(1) in the
boundary operators, we discretize (3.1) into

2n

Mhgh.= Z(ay(ti) +a?6,0)2Y (1), 1=0,1,...,m,

v=0
(3.3) Fhah:= 2n—1 2n
Bhgh:= (B{’xh = Z (b, (0)2) 2 (0) + biu(l)gr"xh(l)]) .

v=0

=1

Choosing in this formula all the Z¥, s = d, [, r, by centered compact formulas,

(3.4) Q¥ .= (DyD_), ¥+ .=(D,D_)"Dy fors=d,l,r,
we discretize (3.2) into
(3.5) Fhgh = Ah (L3y>.
By
For y € C™*2(0, 1], implying z, € C?"*2[0,1], we find by standard arguments that
(36) JAR Fuzo — FEAzo o < B2C]gllones,

and hence, we have consistency independent of o. Here and in the sequel we have
to assume 0 < h < hg,.

To estimate the stability bounds—yielding existence and uniqueness of =" with
(3.6)—we use a result due to Beyn (1], determining the size of this bound instead of
showing only its existence as in Grigorieff [8], Kreiss [11], Esser [7], or Vainikko [25].
Let A, and A" denote the inverse operators for F,: C2?"[0,1] — C°[0,1] x R?"
and F': {G" - R} — {G} — R} x R?", respectively. To determine A, (z,), and
hence, to compute the solution z to Fox = (z,7), we use the techniques of Section
2: Let p:= HN'r, 2 := 2 —p € D(L*L), (L*L + o*I)i = z — L§Lop — o?p, s0
finally

(3.7 An(z,7) =2 = (L*L + o®I)~Y(2 — L§Lop — o*p) + p.
The continuity of HN1, (2.13), and Remark 2.2 yield the estimate

C C
(38) [ Aa(z 7)o < lAa(z,)llcn = llzllozn < —ll(z7)llce = | Fazlice
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for1=0,1,...,2n — 1, which implies that

C
(3.9) Mallgos = sup  Aa(z,)lon < 5.

2,7 )|lc0=

Computing 2z from Flzh = (2*,r) defines A® by A" (2",r) := 2*. Then Theorem
6.2 in [1] states that

(3.10) Jim 144110 = 1 4alco..
In the standard way we obtain from (3.6) and (3.10)

THEOREM 3.1. In (3.1) and (3.2) assume a, € C?[0,1], v =0,1,...,2n, and
y € C™t2(0,1]. Then fori=0,1,...,2n—1,

A%2q — z4lli < Cllyllon+2h?/o?,

(3.11)
[A*zo — 22|l < Cllyllon+2(a® + h?/a?).

Remark 3.2. For P = 0, the negative powers of a? have to be omitted in
Theorems 3.1, 4.1, and 4.3, Remarks 3.3 and 4.4, and Corollary 4.2. We will discuss
the question of avoiding the negative powers of o in the context of asymptotic
expansions at the end of Section 4.

Remark 3.3. The “generalized Collatz Mehrstellenverfahren” or “Hermitian
methods” [6], [10] are defined for the case a, = 0, v = 2n —1,...,2(n — p) +
3, p > 1. Letting F/C ghC AMC ARG denote the appropriate modifications of
Fh gh AR AR respectively, we have to solve the equation

N L
FMOhC = A"'C( ﬂ"y)
Yy

corresponding to (3.5). Then

|AMC Fazq — Fo® AMCaqllo < OB |lyllon+ar,
and for 2 =0,1,...,2n — 1,

[a™C20 — 25:li < Cllyllon+2s (a® + k7P [o?).

4. Asymptotic Expansions for the Discretization Errors. After deriving
consistency, stability, and convergence results, we proceed to develop asymptotic
expansions for the discretization errors. To allow asymptotic expansions, we need
higher smoothness than in Section 3. Consequently, we assume

(4.1) yeC"t0,1] and a, € CH|0,1]

for v = 0,1,...,2n, so 2o, z, € C2("19) [0,1]. Then for the “local discretization
error” AP defined by

(4.2) FhArg = AR[(F, + APM)2),
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we find the following expression which is independent of a:

q—1 q—1 d
N F.
Az =3 W By +0(R9) = h2“( 3}‘””) +O(h29)
p=1

p=1 2uT

2n
> of,a,(t) DV 2a(t)

(4.3) 9-1 v=1
= Z B2H | 2n-1
=l > o4, [bi(0)D¥F242(0) + by, (1) D* T2 2(1)]
v=0
1=1,...,2n
+0(h%),
where the o, are listed as o, , in [10]. In particular,

0 _ 1 _ 1 2 _ 2
=0 = Ir % T Gyt
It is obvious that the Fy,: C2[0,1] — C2(=#=m)[0,1] x R2" are continuous oper-
ators for u=1,...,q— 1,1 >n+p.
To compute an asymptotic expansion for the “global discretization error”
q—1
ah — Ahzy = AP "B fo 5, + O(R*),
v=1

we determine the f, 2, recursively from

q—1 q—1
(4.4) (Fa +y ,h2"f2,,) (za +y h2"fa,2.,> — (Lgy, By) = O(h*?),
v=1

u=1

where by definition on the left side only terms which are not O(h%9) are to be
considered, e.g., the term h29=*F,,_4(h®f, ¢) is neglected. We have indicated this
by the symbol ) in (4.4). Using (3.2), we have to compute the f, 2, inductively

from equations which are obtained by annihilating the A% h%, ... terms in (4.4),
and hence, forv=1,...,q—1,
(4‘5) Fafa,?u =- (F2v-’5a + Z F2ufa,2(v—;4)) = (g:’z:) .

pu=1 ’

Proceeding as in Section 2, we compute

Pa,2v = _HNTTa,%/a
?)a,2u = _(ya,2v + LaLopa,2u + a2pa,2u) =220+ 0(02)a
fa,2u = _(L*L + agI)_lgaﬂu + Pa,2v-

By inductively using the smoothness properties of the f’g,,, Za, fa,2v, starting with
(4.1), we end up with g 2, € C2(@=¥)[0,1]. This implies that

fa,20 € C2MHa=1)[0 1],

The inductive use of the expansions for 4, (L*L+021)!, Y4 20, fa,2v, and a careful
bookkeeping of norms, necessary extensions, and constants yields the following
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(cf. Remark 3.2)

THEOREM 4.1. Let (4.1) be satisfied and assume the discretization (3.3)—(3.5)
is used. Then the functions fo 2, in (4.4),(4.5) exist forv =1,...,q— 1. With
fa,0 := 2o the following estimates are valid for 1 =0,1,...,2n—1:

q—l q—l h2q
sh— AR h2"fa,2u) <C Y Mazvllozinte-w ’el
(4,6) v=0 i v=0
h2a
< C||y||cn+2q o2

The functions a2 a,2v admit the followin ezpan&ion& converging in the norm
y g b g g
” N I|C2(n+q—u) .

oo
(4.7) 0 faou =3 0™ fou, v=01,.,9-1,
p=0

with the norm estimates for j = —1,0,1,... andv =0,1,...,q—1:

27 ,2Vi+1] 5|
a” /o
(18 oz~ duwsllosinrenr < LTI oo,

for daguj =30 _0 02 fay 0.
m

For the lengthy and highly technical proof, see Theorem 7.1, Corollary 7.2, and
Lemma 7.3 in [5].

COROLLARY 4.2. Under the conditions of Theorem 4.1 define do 20 := do,2v,j5,
by choosing bounded 7, := j in (4.8). Then the following estimates are valid for

1=0,1,...,2n—1:
q—1 h2q q—1 ]
7o = A (E hdagy ||| SC | oz + 2 W04 lyllonsa.
v=0 i v=0
Proof. Use the triangle inequality on (4.9), combining it with (4.6) and (4.8).
Since the j, are bounded, » =0,1,...,q—1, the |‘7',,|"/a(2)’”+2 in (4.8) are bounded
as well, independent of « and h. O
Examining the right-hand side of (4.9), we see that the best we can do is to
choose the 7, such that

(4.9)

2
(4.10) B2 g2Ut1-v) < oB L

Since we want the right-hand side of (4.8) to tend to zero as h — 0, we have to
impose some h = o(a), e.g.,

(4.11) h=lal® forec>1.
For this case, (4.10) requires us to choose the 7, such that
(4.12) w2(@-v)c—-1)—-1 (=q—v—1forc=2)

forv=0,1,...,q—-1.
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THEOREM 4.3. Let the conditions of Theorem 4.1 and (4.11), (4.12) be sat-
isfied, and choose the j, bounded. Then the following inequalities are valid for

1=0,1,...,2n—1:
2q
sc(h—).
o2e

jO q_l ju
- ot (s 3, 3 30
p=1 :

v=1 ©n=0 i

(4.13)

Remark 4.4. Upon using the generalized Collatz Mehrstellenverfahren, (4.13)
has to be replaced by

Jo q—1 Juv
ghC — Ak (zo +) oPey +y hY a2(“""+”_1)f2u,2u)
(4.14) u=1 v=p =0 :
h2(a+p-1)
a2

One might ask: Under what conditions on the problem and/or its discretization
can the negative powers of a? be avoided? Because of the linearity of all operators
involved, fq 2 has no a~? term if and only if

(4.15) Pz =0 with 29 := 202 = —Ffxo + LyLoHN ' F2x,.

This condition may randomly be satisfied. For #(L) = {0} or P = 0 it is always
satisfied. By changing the discretization method, and thus F§ and FZ, or F{ and
F} for a first-order method, we again have Pz = 0 only by pure chance. For
problems of the general form (1.1), we have to expect .#"(L) # {0}, and hence, a
combination of regularization and difference methods unavoidably yields negative
powers of . If one is willing to compute .#"(L) first, then one might use the Lt
given in Section 2 to directly compute xg.

5. Numerical Results. The forms of the asymptotic expansions in Section
4 depend strongly upon whether .#" (L) # {0} or # (L) = {0}. Whenever this
information is available (or probable), e.g., for too few or too many boundary
conditions, one should use it. In general, Richardson extrapolation separately for
a and h is not appropriate (see [5]), and we relate o and h to obtain an expansion
in only one parameter.

In case /(L) # {0}, a regularization is unavoidable to compute zo = L'y, and
negative powers of a? occur throughout as in (4.13). Therefore, we choose

a=+/vh when 4 (L) # {0}
to obtain an expansion in powers of h:
(5.1) zh = z'\‘/%=Ah{xo+heI+h2e§+'-'}
with the e} independent of h and a. This situation is illustrated by Example 5.1.

The complementary case /(L) = {0} is only interesting in our contéxt for
N (L*) #{0} or Z(L) = A4 (L*)* # L?[0,1]. We choose

a=~h when #'(L) = {0}
to obtain an expansion in powers of h?:
(5.2) zh .= xgh = APz + h%e; + h4é4 +---}

with the €; independent of A and a. Example 5.2 illustrates this case.
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Ezample 5.1. For n = k = 2 let
(L) = {z € H*0,1]| z(0) = 2'(1) — (1) = 0}, Lz := (2 4+ 1)2" — 2ta’ + 2z,

and let
yi=6t1 — 43+ 12t — 12t + 24+ t(t2 4+ 1)72,

where 4/ (L) = (t), /' (L*) = (¢(t? + 1)~2), and
zo = LTy =t* —2t3 +t2 — ¢/20.

Ezample 5.2. Forn =2,k = 3 let

72
(L) :={z e H0,1]|z(1) = 2'(0) = 2’ (1) = 0}, Lz:=2"+ =5

and let y := €', where /(L) = {0}, /" (L*) = (cosmt/2), and

=Lly= 8 zcoszt—sinzt+7ret—e7r_2tsin£t
=LY T AT 7 %2 2" 72 2 2

In both examples the right-hand side in Lz = y is chosen not to be in F(L).
Utilizing Richardson extrapolation, we have computed the z* and z* in (5.1) and
(5.2) in quadruple accuracy on the IBM 4381 at the University of Marburg with
about 31 digits using the Bulirsch sequence for the stepsizes h = 1/N. Tables 5.1
and 5.2 give the results for Examples 5.1 and 5.2, respectively. The error represents
the error maximum on the coarsest grid, and the corresponding orders should be
1,2,3,... and 2,4,6,..., respectively. ’
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